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Abstract  
Microarray technology for gene expression has been widely used for several years and 

a large number of computational analysis tools have been developed. We focus on the 

most popular platform, Affymetrix GeneChip arrays. Despite the rich research on 

selecting the optimal method of preprocessing and/or detecting differential expression, 

this paper is unique in the following aspects. First, we have explored suitable 

combination of preprocessing and differential expression methods. Second, we have 

evaluated both accuracy and inter-laboratory consistency on a variety of benchmark 

datasets with distinct characteristics. Third, we have compared stochastic-model-

based and physical-mode-based preprocessing algorithms and gene-specific and 

empirical-Bayes’ differential expression detection. We consider popular 

preprocessing methods: MAS 5.0, PLIER, RMA, dChip and PDNN, and differential 

expression methods: fold-change, two sample t-test, SAM, limma and EBarrays. Two 

spike-in datasets and a “real-world-sample” microarray dataset accompanying RT-

PCR measurements are used to assess accuracy, and ROC curves are used for the 

evaluation. To evaluate inter-laboratory consistency, we use a dataset from the 

MAQC project, which contains arrays generated at two different laboratories using 

replicated samples. Inter-laboratory overlap rates of differentially expressed gene lists 

are compared. Our results show that accuracy is more sensitive to preprocessing 

methods, whereas inter-laboratory consistency is more sensitive to differential 

expression methods. We conclude that the signal intensity levels are the main factor 

that explains different performances between methods. We also recommend 

performing loess normalization at the probe set level. 

Keywords: accuracy; inter-laboratory consistency; overlap rate; ROC curve 
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Introduction  

Microarray for gene expression is a device designed to simultaneously measure the 

expression levels of many thousands of genes in a particular tissue or cell type. It is 

widely used in many areas of biomedical research, especially Affymetrix GeneChip 

platform. Millions of probes with length of 25 nucleotides are designed on an 

Affymetrix array. Two categories of probes are designed: “perfect match (PM)” probe 

perfectly matches its target sequence and “mismatch (MM)” probe is created by 

changing the middle (13th) base of its paired perfect match probe sequence. The 

purpose of designing MM probes is to detect the nonspecific binding because their 

perfect match partners may be hybridized to nonspecific sequences. A paired PM and 

MM is called a “probe pair” and each gene will be represented by 11-20 probe pairs 

typically. Owing to this distinctive design, preprocessing Affymetrix expression 

arrays usually involves three main steps, which are background adjustment, 

normalization and summarization. Another fundamental goal of a microarray 

experiment is to identify those genes that are differentially expressed within different 

samples. For example, a disease may be caused by large expression of particular 

genes resulting in variation between diseased and normal tissues. The method used to 

detect the genes that express differentially between different samples is called the 

differential expression method.  

Various preprocessing and differential expression methods have been 

proposed, and their developers using different datasets and criteria claim there are 

some features superior to other methods. Irizarry et al. [1] developed a benchmark and 

a webtool to permit users to decide the most appropriate preprocessing methods for 

their application. Their benchmark was based on Affymetrix’s HGU95 and HGU133 

Latin square experiments and GeneLogic’s dilution experiment, where gene groups 
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were spiked-in at various known concentrations and can be used as a reference to 

evaluate the accuracy of the expression values. They focused on the comparison of 

various preprocessing methods, not differential expression methods. In the Golden 

Spike Experiment, Choe et al. [2] presented a new spike-in dataset that had much 

larger number of spiked-in cRNAs and lower concentration fold changes in spiked-in 

cRNAs than the Affymetrix Latin square dataset and the GeneLogic dataset. Unlike 

being done by Irizarry et al. [1] that used each preprocessing algorithm as a whole, 

Choe et al. [2] considered every compatible combination of the options in various 

algorithms. Combinations of various preprocessing methods with t-statistic-variant’s 

differential expression methods were implemented to the Golden Spike dataset. They 

concluded that subtracting MM signals from the PM probe intensities and performing 

normalization at probe set levels can greatly improve the ability of identifying truly 

differentially expressed genes. Comparing with the results of Irizarry et al. [1], the 

first conclusion was in apparent conflict and the probe-set-level normalization was not 

done there. Pearson [3] outlined six stages in the analysis pipeline to the Golden Spike 

dataset and conducted a very extensive comparison of various combinations of 

preprocessing and differential expression methods. He recommended the use of only 

equal spiked-in probe sets as true negatives and the use of probe-set-level 

normalization. Spike-in datasets had been criticized for too far removed from real 

world applications to be very useful. Qin et al. [4] had evaluated the performance of 

preprocessing methods on microarray datasets from real-world samples, using RT-

PCR as the “gold-standard” assay. They concluded that using mismatch data for 

background adjustment achieved the best agreement between array and RT-PCR. In 

contrast to previous studies that focused on the identification of genes that expressed 

differentially under various experimental conditions, the MAQC project [5] aimed at 
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assessing the reproducibility of gene expression profiling data across platforms and 

laboratories. They found that the overlap across the two sites in genes that were 

identified as differentially expressed was high when the genes were selected by rank 

ordering the genes based on fold change, and, furthermore, gene lists were more 

consistent than those obtained by t-statistic-variant p-value.  

Despite the rich research on selecting the optimal method of preprocessing 

and/or differential expression, results have been limited or inconclusive for the 

following three reasons. First, preprocessing and differential gene expression 

discovery should be regarded as necessarily linked in the sense that preprocessing 

strongly determines which gene will be found to be differential [3, 6]. However, fewer 

studies have explored the best combination of two methods. Second, existing studies 

perform evaluation solely based on one benchmark dataset, which can result in a 

phenomenon called “over-training” [7].  There is clearly a need to assess methods on 

a wide range of suitable data sets, so that we can resolve conflicting results in the 

literature and comfortably extrapolate the conclusions from benchmark datasets to 

general use. Third, methods based on different models and ideas should be compared. 

Stochastic-model-based algorithms have been shown to improve the preprocessing of 

array data, whereas physical-mode-based algorithms also demonstrate the superior 

performance over stochastic-model-based algorithms [8]. In defining differentially 

expressed genes, current practice is to perform a gene-specific analysis, however, the 

empirical Bayes method, which can share information among genes, has gained 

popularity. 

In the current study, we use various benchmark datasets to evaluate 

combinations of the most popular preprocessing and differential expression detection 

methods in terms of accuracy and inter-laboratory consistency. This study does not 
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intent to identify the “best” combination of preprocessing and differential expression 

detection methods from existing literature. In fact, it is unlikely to identify the best 

combination because of the huge amount of existing methods and the availability of 

the software. We aim to explore, under different analytic purposes (accuracy and 

inter-laboratory consistency) and various microarray datasets with distinct 

characteristics, the conditions that best fit to preprocessing and/or differential 

expression combinations. Here we consider four commonly used preprocessing 

algorithms with each taking a distinct adjustment strategy. They include stochastic-

model-based algorithms: Microarray Suite software Version 5.0 (MAS5: [9]), Probe 

Logarithmic Intensity Error (PLIER: [10]), DNA-Chip Analyzer (dChip: [11, 12]) and 

Robust Multi-array Analysis (RMA: [13]), and physical-mode-based algorithm: 

Position-Dependent Nearest-Neighbor (PDNN: [8]). There are five popular 

differential expression methods considered: Fold-change (FC), two sample t-test, 

Significance Analysis of Microarrays (SAM: [14]), Linear Models and Empirical 

Bayes methods (limma: [15, 16]) and Parametric Empirical Bayes methods (EBarrays: 

[17, 18, 19]). Four benchmark datasets in total are used for evaluation. Two are spike-

in datasets used to assess the accuracy: one from Affymetrix Latin square datasets and 

one from the Golden Spike Project. One “real-world-sample” microarray dataset 

accompanying RT-PCR measurements from the MAQC project is also used for 

accuracy. ROC curves are used for the evaluation. To evaluate the inter-laboratory 

consistency, we use another dataset from the MAQC project, which was generated 

using samples hybridized to Affymetrix platform at two different laboratories. 

Overlap rates of differentially expressed gene lists from two laboratories are 

compared.  
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Material and methods 
Benchmark datasets  

HGU133 Spike-in (Affymetrix human genome U133 spike-in dataset) 
This dataset consists of 42 arrays, where 14 gene groups have been spiked-in at 

various known concentrations ranging from 0.125 to 512pM [20]. In addition to 14 

spike-in gene groups, a common background cRNA have been added at all arrays. 

The 14 spike-in gene groups are arranged in the format of a 14×14 cyclic Latin square 

design with each concentration appearing once in each row and column. Each gene 

group contains 3 spike-in genes, and each experimental group contains 3 replicates. 

We consider 42 spike-in genes to be truly differentially expressed genes (DEGs) and 

other non-spike-in genes to be truly non-differentially expressed genes (NDEGs). 

Golden Spike (a wholly defined control spike-in dataset) 
Choe et al. [2, 21] generated a new control dataset that contains two sets of triplicates 

hybridizing to Affymetrix GeneChips. The two sets are spike-in samples and control 

samples, resulting in a total of 6 arrays. This dataset has three main distinct features as 

comparing to HGU133 Spike-in: (1) 1331 spike-in genes (probe sets) spiked-in at 

known differential concentrations between the spike-in and control samples, a much 

larger fraction of gene expression differences; (2) a lower fold changes ranging 

between 1.2-fold and 4-fold concentration difference; and (3) a defined background 

sample of 2535 genes presented at identical concentrations in both spike-in and 

control samples, rather than a biological RNA sample of unknown composition. In 

this paper, the 1331 genes spiked-in at different concentration between the spike-in 

and control samples are treated as DEGs. All the others including the 2535 genes 

spiked-in at 1:1 ratios and the non-spike-in (empty) genes are treated as NDEGs.  
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MAQC RT-PCR (MicroArray Quality Control project TaqMan Assays versus Affymetrix 
HG-U133 Plus 2.0 GeneChip) 
Data here are taken from the MAQC project [22]. The two RNA sample types: 

Universal Human Reference RNA (UHRR) and Human Brain Reference RNA 

(HBRR) were distributed among independent test sites with each test site using 

different microarray platforms to generate gene expression measurements.  There 

were one test site using Applied Biosystems TaqMan Assays and three test sites using 

Affymetrix HG-U133 Plus 2.0 GeneChip. For TaqMan data, four replicate assays for 

each of the sample types were processed. For Affymetrix GeneChip data, there were 

five replicates for each of the sample types. We evaluate the performance of 

preprocessing and differential expression combinations on Affymetrix GeneChip data 

using TaqMan results as the gold-standard. Here, we only use the Affymetrix 

GeneChip data from test site 3 because this test site showed the best agreement with 

the TaqMan results (Figure 6b in [5]). Only 773 genes that were detected both on the 

TaqMan assays and on the Affymetrix GeneChip are included in this analysis. The 

two-sample t-test is performed to compare normalized TaqMan data between the 

UHRR sample type and the HBRR sample type (Detailed normalized approaches used 

can be found in Supplementary data of [5]). As a result, 618 genes with false 

discovery rate <0.05 are considered as DEGs, and other 155 genes are considered as 

NDEGs. Of note, we have chosen the t-test to determine DEGs and NDEGs in 

TaqMan data because the MAQC and many other studies also used the t-test for 

selecting differentially expressed genes in RT-PCR data [23, 24, 25]. We have also 

used SAM to redo the analysis of detecting differentially expressed genes in TaqMan 

data. There are 586 genes that are identified as DEGs and 20 genes that are identified 

as NDEGs by both t-test and SAM; as a result, the concordance rate between two tests 

in identifying differentially expressed genes is (586+20)/773=0.78. Two test results 
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are consistent and we are thus confident of differentially expressed genes selected by 

t-test. 

MAQC Rats (MicroArray Quality Control project rat toxicogenomic study)  
This dataset is a part of the complete dataset from a rat toxicogenomic study [26], 

which is one of the reference datasets of the MAQC project [22]. The dataset was 

generated using 36 RNA samples from rats treated with three chemicals (aristolochic 

acid, riddelliine and comfrey). In total there were six treatment/tissue groups: kidney 

from aristolochic acid-treated rats (K_AA), kidney from vehicle control (K_CTR), 

liver from aristolochic acid-treated rats (L_AA), liver from riddelliine-treated rats 

(L_RDL), liver from comfrey-treated rats (L_CFY) and liver from vehicle control 

(L_CTR). Within each treatment/tissue group, there were six biological replicates. 

Aliquots of these samples were prepared and distributed to each of the five test sites 

for gene expression profiling using microarrays from one of the four different 

platforms (Affymetrix, Agilent, Applied Biosystems and GE Healthcare). There are 

two test sites using Affymetrix platform, and we adopt only the data from these two 

test sites. Each test site generated 36 arrays respectively.  

Preprocessing methods  
Preprocessing Affymetrix expression arrays usually involves three main steps: 

background adjustment, normalization, and summarization. Table 1 gives a summary 

of the preprocessing methods compared. Software for carrying out the analysis and 

relevant references are also provided in Table 1. 

Differential expression methods  
Table 2 gives a summary of the differential expression methods used, including the 

test model, significance score, software for implementing the method and relevant 

references.  The significance score is used to represent the level of significance of 
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each gene, and the genes are then ranked by this score when drawing the ROC curve. 

The significance scores are based on two-sided tests. In the Golden Spike dataset, all 

differentially expressed spike-ins are up-regulated (the spike-in samples contain 

increased concentration of spiked-in cRNAs compared to the control samples). 

Therefore, it is more reasonable to use one-sided up-regulated tests than two-sided 

tests. However, in typical microarray experiments, there is a balance between up- and 

down-regulation, and we do not know which gene is up-regulated and which is down-

regulated. We are more interested in the performance of differential expression tests 

regardless the direction of change. As such, two-sided tests are used. 

ROC curves for accuracy  
The accuracy of a combination of preprocessing and differential expression methods 

is shown by how well the combination actually measured what it is supposed to 

measure. To properly compare the combinations in terms of accuracy, the true 

differentially expressed genes of the dataset must be known. Three benchmark 

datasets are used for accuracy:  two datasets HGU133 Spike-in and Golden Spike that 

provide the results of spike-in experiments where gene fragments have been added at 

known concentrations, and the MAQC RT-PCR dataset where the results from the 

TaqMan are used as the gold standard.  The Receiver Operating Characteristic (ROC) 

curve is used. The ROC curve, which is widely used to evaluate the differential 

expression methods in microarray analysis, is a graphical plot of the sensitivity (x-

axis) versus 1-specificity (y-axis) for a binary classifier system as its discrimination 

threshold is varied. Sensitivity and specificity are measurements of how well a binary 

classification test correctly identifies the truth.  Sensitivity is defined as the 

probability that the test lead to make positive decision given that the truth is actually a 

positive case. This is also known as the true positive (TP) rate. Specificity is defined 
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as the probability that a negative decision is made when the truth is negative. In other 

words, 1-specificity represents the probability that the positive decision is made when 

the truth is negative, and the meaning is equivalent to the false positive (FP) rate. It 

provides tools to select possibly optimal methods by comparing the area under the 

ROC curve (AUC). The AUC measures discrimination, that is, the ability of the test 

to correctly classify those positive case and negative case in fact. The bigger the AUC, 

the better the overall performance of the test. In this paper, we use absolute TP and FP 

instead of rates for the ROC curve because it is easier to interpret [1]. Its AUC is then 

standardized by dividing the total area.  

Here we make a brief description of how to accomplish an “average” ROC 

curve for the HGU133 Spike-in dataset. Different experimental groups imply that the 

spike-in genes are spiked-in at different concentrations. Here, we restrict attention to 

the comparison between concentrations with a 4-fold or smaller change. For each pair 

of experimental groups with a 4-fold or smaller difference in concentration, all 42 

spike-in genes have the same concentration fold-change between two groups and thus 

are considered as DEGs. We compute the number of TPs and FPs for a large range of 

thresholds. To form an average ROC curve, we compute the average TP number over 

all these pairs of experimental groups for each FP value. An average ROC curve is 

created by plotting the FP versus its average TP [1].  

Overlap rates for inter-laboratory consistency 
The inter-laboratory consistency is based on the degree to which the differentially 

expressed genes obtained by the combination can be in agreement across laboratories. 

It is essential to assess this lab-to-lab variability before one can meaningfully merge 

and/or compare conclusions from different studies. As a result, the high level of inter-

laboratory consistency can be a crucial criterion for picking up the preprocessing and 
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differential expression combinations. To properly compare the method combinations 

in terms of inter-laboratory consistency, we use the MAQC Rats dataset, where 

replicated RNA samples from rats treated with three chemicals were distributed to 

each of the two laboratories for gene expression profiling. For each method 

combination, we plot the graph where the x-axis represents the number of genes 

selected as differentially expressed genes and the y-axis represents the overlap rate of 

two differentially expressed gene lists (from two laboratories) for a given number of 

differentially expressed genes. The overlap rate is measured using the Jaccard 

similarity coefficient. For example, when we employ two sample t-test as differential 

expression method and use p-value 0.05 as the threshold, two gene lists according to 

the two test sites are produced respectively by collecting the genes which have p-

value smaller than 0.05. The numerator of the overlap rate is defined as the number of 

overlapping genes of two gene lists, and the denominator of overlap rate is defined as 

the total number of genes in the union of two gene lists. Thus, if there are genes 

 have p-value smaller than 0.05 for the first test site and genes { } 

have p-value smaller than 0.05 for the second test site. The overlap rate is 

{ edcba ,,,, } fedc ,,,

5.0
6
3
= .  

Four groups of tissues suffering different treatments versus their controls are 

considered for the differential expression comparison: L_AA vs. L_CTR, L_CFY vs. 

L_CTR, L_RDL vs. L_CTR and K_AA vs. K_CTR. Patterns for each of the four 

tissue/treatment groups versus their controls were similar, thus, the “average” graph 

showing the overlap rates averaging over four tissue/treatment groups is used to 

facilitate the comparison.  
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Results  
Only part of the area under the ROC curve is used for evaluating accuracy  
For the ROC curve of the HGU133 Spike-in dataset, the growth in TP of most 

combinations became flat gradually when FP>100 (Supplementary figure 1). 

Furthermore, in this dataset, TP rates of the best performance had reached about 95% 

when FP=100. As for combinations that performed badly in FP<100, their TP rates 

can increase as FP>100, but their performances still cannot catch up to those that 

performed well in FP<100 (Supplementary figure 1). Thus, we focused on the part of 

FP<100 and reported the AUC up to 100 FPs in the HGU133 Spike-in dataset. 

Unlike most microarray experiments that contain only a small percentage of 

differentially expressed genes, the Golden spike dataset had nearly 10% of the genes 

to be differentially expressed. Only considering the ROC curve with FP<100 as we 

did for HGU133 Spike-in was not suitable for this dataset. From Supplementary 

figure 2, we found that it was reasonable to focus on the part of the ROC curve with 

FP rate<0.1 (FP 1266).  ≈

In the MAQC RT-PCR dataset, there are more differentially expressed genes 

(618 genes) than non-differentially expressed genes (155 genes). Supplementary 

figure 3 shows that the curves from all combinations merge together after FP>50. We 

thus only considered the ROC curve with FP<50.  

Two combinations cannot be executed in R, and we had no information about 

their performance. They were HGU133 Spike-in＋dChip(PM-MM)＋EBarrays(GG) 

and HGU133 Spike-in＋PDNN＋EBarrays(GG). These failures were caused by the 

convergence of the estimating procedure emfit in EBarrays to boundary solutions. 

Thus, there were 42 combinations for the Golden Spike and MAQC RT-PCR datasets, 

but only 40 combinations for the HGU133 dataset. 
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We used the AUC up to 100 FPs in the HGU133 Spike-in dataset, AUC up to 

the 0.1 FP rate in the Golden spike dataset and AUC up to 50 FPs in the MAQC RT-

PCR dataset as criteria for ranking the performance in accuracy. If there was a distinct 

difference in the AUC between two continuously ranked combinations, combinations 

were separated from there and divided into two groups. By this way, total 

combinations were clustered into four groups for the HGU133 Spike-in dataset, three 

groups for the Golden spike dataset and five groups for the MAQC RT-PCR dataset 

as shown in Supplementary tables 1-3. Their corresponding ROC curves are shown in 

Figures 1-3. 

Pre-processing methods RMA, PLIER16 and PDNN produce superior accuracy 
for the HGU133 Spike-in dataset 
There were four important findings from analyzing the HGU133 Spike-in dataset. (1) 

RMA, PLIER16 or PDNN cooperated with most differential expression methods had 

excellent performances, except when the Welch t-test or t.test was employed as the 

differential expression method (Supplementary table 1 and Figure 1). (2) Conversely, 

the combinations with preprocessing methods of MAS5 or dChip(PM-MM) were 

inferior to other compared combinations. Notice that this inferiority became worse 

when a differential expression method EBarrays or FC was used. (3) For a fixed 

differential expression method, performances varied greatly when employing different 

preprocessing methods, except for t-test and Welch t-test that performed badly 

persistently. (4) All combinations using the t-test outperformed those using the Welch 

t-test. The simple differential expression method FC can perform surprisingly well 

when combining with RMA or PLIER16. 
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Pre-processing method dChip has the best accuracy for the Golden Spike 
dataset 
Results for the Golden Spike dataset were different from results for the HGU133 

Spike-in dataset. (1) dChip had an outstanding performance on Golden Spike 

(Supplementary table 2 and Figure 2). All combinations were clearly divided into 

three groups. Especially, combinations with dChip(PM-only) cooperated with every 

differential expression method were classified into the best group (Supplementary 

table 2). However, dChip(PM-MM) had an extreme performance. When it was 

cooperated with differential expression methods: t-test, Welch t-test, limma and SAM, 

the performance was outstanding; otherwise, it performed poorly. (2) MAS5 

combined with FC/EBarrays(GG)/EBarrays(LNN) performed poorly (Supplementary 

table 2). (3) For a fixed differential expressed method, performances varied greatly 

when employing different preprocessing methods (Figure 2). 

Irizarry et al. [27] showed that genes spiked-in at equal levels had lower fold 

changes than non-spike-in (empty) genes in the Golden Spike dataset. As pointed out 

by many researchers, this artifect can invalidate the comparison if the set of all 

unchanging (equal and empty) probes is used as the true negatives [3, 27]. We thus 

removed the empty probe sets and only included 2535 genes spiked-in at 1:1 ratios as 

the true negatives and see if above conclusion still hold. Resulting AUCs and 

corresponding ROC curves are shown in Supplementary table 4 and Supplementary 

figure 4. Conclusions are consistent with mild differences. (1) dChip still had an 

outstanding performance on Golden Spike (Supplementary table 4 and Supplementary 

figure 4). Combinations with dChip cooperated with every differential expression 

method were on the top of the ranking (Supplementary table 4). (2) Preprocessing 

methods that implemented PM-MM (dChip(PM-MM) and MAS5) did pretty well. 
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Their performances in the HGU133 Spike-in dataset and in the Golden Spike dataset 

were quite different. (3) PLIER16 performed poorly (Supplementary table 4). 

dChip is good for experiments with high signal intensities, whereas RMA and 
PDNN are good for low signal intensities 
To resolve the inconsistence between the conclusions reached by HGU133 Spike-in 

and Golden Spike, histograms of the log2-transformed signal intensities for DEGs and 

NDEGs are given in Figure 4. Clearly, DEGs of the Golden Spike dataset had much 

higher intensity levels than those of the HGU133 Spike-in dataset. For NDEGs, two 

datasets had pretty close signal intensity levels. We thus hypothesized that the signal 

intensity levels of probe sets can be the cause of this inconsistence. To verify this 

hypothesis, we re-plotted ROC curves for the Golden Spike dataset, using DEGs and 

NDEGs whose intensity levels lay between the 1st quartile and the 3rd quartile of 

spike-in and non-spike-in intensity levels of the HGU133 Spike-in dataset, 

respectively (Figure 5). There were 209 DEGs and 5059 NDEGs being selected from 

Golden Spike for re-drawing. Interestingly, PDNN and RMA outperformed dChip in 

these “low intensity” ROC curves. We also re-plotted “high intensity” ROC curves 

for the HGU133 Spike-in dataset, following analogous process above. Only 

experiment pairs of 9 versus 10, 11 versus 12 and 13 versus 14 had 4 or more spike-in 

probe sets that had intensity levels falling between the 1st quartile and the 3rd quartile 

of DEG intensity levels of the Golden Spike dataset. Figure 5 displays “high 

intensity” ROC curves for the HGU133 Spike-in dataset when comparing 

experiment11 with experiment 12. We found that dChip(PM-only) outperformed 

PLIER16, and  dChip(PM-only) can outperform RMA and PDNN when cooperated 

with differential expression methods SAM and limma. From these results, we thus 

conclude that dChip is good for experiments with high signal intensities, whereas 

RMA and PDNN are good for experiments with low signal intensities. 
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Because the absolute intensity level does not have equivalent meaning across 

platforms/experiments, we thus suggest the readers to compare their preprocessed 

log2-transformed intensities with Figure 4 or Supplementary table 5 to judge the 

experiment to have high or low signal intensities. 

Probe-set-level loess normalization is recommended, especially for 
experiments with high signal intensities 
Choe et al. [2] found that a second normalization at the probe set level generally 

yielded superior results. Figure 6 shows the ROC curves for expression levels with 

loess or quantile normalization at the probe set level. For HGU133 Spike-in, the 

probe-set-level normalization did not change the accuracy. However, for Golden 

Spike, the loess normalization can improve the accuracy, and PDNN and RMA 

performed better than dChip when performing the probe-set-level normalization. 

Therefore, we recommend that preprocessing method RMA or PDNN plus the loess 

normalization at the probe set level are used for experiments with high signal 

intensities. 

Preprocessing methods PDNN and PLIER16 result in the best agreement with 
the TaqMan, while differential expression method EBarrays has the worst 
agreement 
Figure 3 displays the ROC curves for the real Affymetrix HG-U133 Plus 2.0 

GeneChip data from the MAQC project, using genes that were significantly 

differentially expressed in TaqMan arrays as DEGs. PDNN and PLIER16 cooperated 

with SAM/limma/t.test/FC had the highest area under the curve (Supplementary table 

3). dChip(PM-MM) had relatively poorer performance than other preprocessing 

methods. These results were similar to the results from the HGU133 Spike-in dataset. 

In fact, the average signal intensities for the MAQC RT-PCR dataset were closer to 

the average signal intensities for the HGU133 Spike-in dataset than to the average 

signal intensities for the Golden Spike dataset (Supplementary table 5). This is 
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consistent with our hypothesis that the signal intensity levels are the main factor that 

explains different performances between methods. In general, combinations with the 

same preprocessing methods tended to perform similarly except that combinations of 

most preprocessing methods and EBarrays had the worst performance. The role for 

the preprocessing methods in accuracy was not as prominent as observed in the 

HGU133 Spike-in and Golden Spike datasets.  

Inter-laboratory consistency depends more on differential expression methods 
than on preprocessing methods with FC having the best performance 
In comparing the method combinations in terms of inter-laboratory consistency in the 

MAQC Rats dataset, we found that the trends of overlap rate change for most 

combinations were similar when the number of genes selected as differentially 

expressed was greater than 10,000. Thus, our comparison in inter-laboratory 

consistency focused on the value of the x-axis of the overlap plot less than 10,000. 

From Figure 7, we found that inter-laboratory consistency depended more on 

differential expression methods than on preprocessing methods because combinations 

were clustered by differential expression methods. When FC differential expression 

method cooperated with non-MM-corrected preprocessing methods (RMA, PDNN, 

PLIER16 and dChip(PM-only)), combinations had highest overlap rates. However, 

FC with MM-corrected preprocessing methods (MAS5 and dChip(PM-MM)) had a 

rapidly drop-off consistency. Differential expression methods SAM and limma were 

also doing well in inter-laboratory consistency, with the overlap rate greater than 0.5. 

However, differential expression method EBarray did poorly in inter-laboratory 

consistency.  
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Source codes for creating ROC curves, overlap plots and histograms of signal 
intensities are available 
We have made the source codes used to create this paper available as Supplementary 

file 2. R codes for creating ROC curves, overlap plots, and histograms of the log2-

transformed signal intensities are contained in Supplementary file 2. This would be 

useful for readers to use the proposed methods to compare their combinations. 

Conclusion and discussion 
Through the analysis of spike-in, RT-PCR and cross-laboratory benchmark datasets, 

our results provide general guidelines for selecting preprocessing and differential 

expression methods in analyzing Affymetrix GeneChip array data. It seems that 

accuracy is more sensitive to preprocessing methods, whereas inter-laboratory 

consistency is more sensitive to differential expression methods. We conclude that 

preprocessing method dChip is good for experiments with high signal intensities, 

whereas preprocessing methods RMA and PDNN are good for experiments with low 

signal intensities. Loess normalization at the probe set level is found to be specifically 

useful for experiments with high signal intensities. In general, differential expression 

methods SAM and limma have better performance than other differential expression 

methods. Differential expression method EBarray usually performs poorly when 

cooperating with MM-corrected preprocessing methods. 

We find that accuracy is more sensitive to preprocessing methods, whereas 

inter-laboratory consistency is more sensitive to differential expression testing. 

Hoffmann et al. [28] has also shown that the normalization procedure has a much 

stronger effect on the subsequent detection of differentially expressed genes than the 

differential expression test. Possible explanations are: first, the spike-in and MAQC 

RT-PCR datasets use technical replicates instead of biological ones, which create 

biases that can only be corrected by appropriate preprocessing. The differential 
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expression testing that aims to account for random variation thus does not make 

improvement in accuracy. In the MAQC Rats dataset, groups of six 6-week-old Big 

Blue rats are used for replications; as a result, these biological replicates contain 

variations that can differentiate the performance of various differential expression 

methods. Second, in the spike-in experiments, only 3 replications are made for each 

condition, which is apparently not enough for statistical testing to reach reasonable 

power. The MAQC RT-PCR and MAQC Rats datasets contain 5 or 6 replicates and 

thus provide the differential expression tests to demonstrate their effects. 

Our analysis emphasizes that the numerical difference in absolute intensity 

levels can affect the performances of various preprocessing and differential 

expression methods. Irizarry et al. [27] has also pointed out the difference in 

expression intensity levels between HGU133 Spike-in and Golden Spike; thus they do 

not expect an algorithm that performs well on Golden Spike to necessarily perform 

well on HGU133 Spike-in, and vice versa. Our results verify their conjecture. After 

careful examination of two stochastic algorithms RMA and dChip that perform well 

in HGU133 Spike-in and Golden Spike respectively, we have gained some insights on 

why their performances vary. First, researchers demonstrate that background noise 

makes it harder to detect differential expression for genes that are present at low 

intensities [1]. RMA has made special efforts to first adjust intensities to remove the 

background effect and then obtain an expression measure using a linear additive 

model on the background-adjusted intensities, whereas dChip performs a joint 

modeling of the background noise and the expression measure. For large values of 

intensities, the joint model is preferable. However, expression measures close to 0 can 

have particularly large variance and thus the two-stage approach is more appropriate. 

Second, RMA and dChip both recognize that linear scale measures are not optimal. 
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RMA applies a linear additive model for log-transformed intensities, and dChip 

adopts a multiplicative model for original intensities. Both algorithms assume a linear 

model for intensities on a log scale, but the constant variance assumption of the linear 

model is assumed on log-transformed intensities in RMA and on original intensities in 

dChip. It is shown that for low intensity measures the log transformation can help the 

satisfaction of the constant variance assumption [29]. Third, RMA uses a robust 

estimating procedure (median polish) to protect against outlier probes, and dChip 

develops a selection procedure of outlier probes and discard them in estimating 

intensity measures. It seems two approaches can have different effects on different 

values of intensities. 

It is essential to assess the lab-to-lab variability (the lab effect) before one can 

meaningfully merge and/or compare conclusions from different studies. Many 

researches have shown a minimal lab effect [5, 30]. Our results provide extra 

information: some statistical testing approaches used for detecting differentially 

expressed genes can inflate this usually small lab effect, whereas different 

preprocessing procedures perform consistently (to truth or falseness) across 

laboratories. 

There are some interesting findings about differential expression methods. 

When EBarrays cooperated with a MM-corrected preprocessing method, its accuracy 

and inter-laboratory consistency are lower than other combinations’. However, the 

other empirical Bayes approach limma performs excellent no matter what 

preprocessing algorithms it goes with. Although EBarrays and limma both adopt 

empirical Bayes approach, their basic modeling frames are different. EBarrays 

considers a finite mixture and hierarchical model; whereas limma uses a linear model 

to perform the modified t-test in which the empirical Bayes approach is used to shrink 
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the estimated sample variances. Our finding can reflect that the noise created by 

subtracting MM is inflated when implementing the “full” hierarchical Bayes approach, 

but this noise does not bias the selection of differentially expressed genes when using 

the standard t-test with modified variance estimates. This conclusion is reconfirmed 

by the observation that SAM also does well in both accuracy and inter-laboratory 

consistency even when cooperating with MM-corrected preprocessing methods. Lo 

and Gottardo [31] also conclude that limma has better performance than EBarrays. 

They have found that the assumption of a common coefficient of variation across 

genes in EBarrays can adversely affect the resulting inferences, and have presented an 

extended model that is shown to have comparable performance to limma. 

FC is found to perform good in inter-laboratory consistency but not in 

accuracy. Guo et al. [26] also find that using fold change, rather than t-test, gets more 

reproducible. Another interesting observation from Guo et al. [26] is that t-test p-

value ranking is dramatically affected by the choice of normalization methods; 

however, when FC ranking is used for gene selection, the impact of normalization 

methods on the overlap of gene lists becomes minimal (Supplementary Figure 3 for 

[26]). Our Figure 7 shows a different picture, where, especially when the number of 

differentially expressed genes is greater than 100, FC with MM-corrected 

preprocessing methods has a rapidly drop-off consistency, but limma, SAM and t-test 

cooperated with all preprocessing methods have a steadily increased consistency. This 

difference is caused by several reasons. First, Supplementary Figure 3 of [26] 

compares the overlap of gene lists derived from two normalization methods on data 

generated at the same test site; whereas our Figure 7 shows the overlap rates between 

two test sites that implement a specific preprocessing method. Second, [26] is based 

on the Applied Biosystems platform and we are based on the Affymetrix. Third, it 
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seems that the background adjustment (PM-only versus PM-MM) is the major factor 

that explained difference between methods, not normalization [1].   
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Figures 
Figure 1 - ROC curves for the HGU133 Spike-in dataset. 
In the top panel, combinations using the same preprocessing method are assigned to 

the same color. In the bottom panel, combinations using the same differential 

expression method are assigned to the same color. Only FPs<100 are shown. There 

are 40 combinations in total. 

Figure 2 - ROC curves for the Golden Spike dataset. 
In the top panel, combinations using the same preprocessing method are assigned to 

the same color. In the bottom panel, combinations using the same differential 

expression method are assigned to the same color. Only FP rates<0.1 are shown. 

There are 42 combinations in total. 

Figure 3 - ROC curves for the MAQC RT-PCR dataset. 
In the top panel, combinations using the same preprocessing method are assigned to 

the same color. In the bottom panel, combinations using the same differential 

expression method are assigned to the same color. Genes that are significantly 

differentially expressed in TaqMan arrays are treated as the true positives. Only 

FPs<50 are shown. There are 42 combinations in total. 

Figure 4 - Histograms of the log2-transformed signal intensities for truly 
differentially expressed and non-differentially expressed probe sets. 
Left panels are plots created from the GHU133 Spike-in dataset with various 

preprocessing methods, and right panels are plots created from the Golden Spike 

dataset. In the HGU133 Spike-in dataset, curves of “spikein” are created using 42 

spike-in probe sets, and curves of “non-spikein” are using other non-spike-in probe 

sets. In the Golden Spike dataset, curves of “spikein” are created using 1331 genes 

spiked-in at different relative concentration between the spike-in and control samples, 

and curves of “non-spikein” are using 2535 genes spiked-in at 1:1 ratios and the non-
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spike-in (empty) genes. In the plot, each “box” represents the boxplot of the 

corresponding signal intensities. 

Figure 5 - ROC curves when using a subset of probe sets. 
For the HGU133 Spike-in dataset, we re-plotted the ROC curve of experiment 11 

versus 12, using spike-in and non-spike-in probe sets whose intensity levels lay 

between the 1st quartile and the 3rd quartile of DEG and NDEG intensity levels of the 

Golden Spike dataset. Only FPs<100 are shown. For the Golden Spike dataset, we re-

plotted the ROC curve, using DEGs and NDEGs whose intensity levels lay between 

the 1st quartile and the 3rd quartile of spike-in and non-spike-in intensity levels of the 

HGU133 Spike-in dataset. Only FP rates<0.1 are shown. 

Figure 6 - Comparison of ROC curves with or without probe-set-level 
normalization. 
Left panels are ROC curves without a second normalization at the probe set level.  

Middle panels are ROC curves with a loess normalization at the probe set level. Right 

panels are ROC curves with a quantile normalization at the probe set level.  

Figure 7 - Overlap rates between two test sites  
In the top panel, combinations using the same preprocessing method are assigned to 

the same color. In the bottom panel, combinations using the same differential 

expression method are assigned to the same color. Only the numbers of differentially 

expressed genes<10,000 are shown. The x-axis (the number of differentially 

expressed genes) is in the log10 scale. 

 

 



Tables 
Table 1 - Summary of the preprocessing methods compared 
Model Method Background 

adjustment 
Normalization Summarization Software Reference

 
 
 
Stochastic 
model 

MAS5 Locational 
adjustment & MM 
intensities 
subtraction 

Scale 
normalization 

Tukey biweight average mas5 function in the 
Bioconductor affy 
package  

[9] 

PLIER16 Probe-specific 
background 
adjustment  

Quantile 
normalization 

Fit a model with feature 
response parameters and 
multiplicative errors 

justPlier function in 
the Bioconductor plier 
package. The constant 
16 was back to the 
estimated intensity. 

[10] 

dChip 
(PM-MM) 

MM intensities 
subtraction 

Invariant set Fit a model-based 
expression index model 

dChip 2006 Software 
downloaded from the 
author’s webpage 

[11] 

dChip 
(PM only) 

PM only Invariant set Fit a model-based 
expression index model 

dChip 2006 Software 
downloaded from the 
author’s webpage 

[12] 

RMA Convolution (global) 
background 
correction 

Quantile 
normalization 

A robust linear model is 
fitted (median polish) 

rma function in the 
Bioconductor affy 
package 

[13] 

Physical 
model 

PDNN PM only Quantile 
normalization 

Use a free energy model 
that accounts for 
background and signal 

PerfectMatch 
Software (Version 
2.3) downloaded from 
the author’s webpage 

[8] 
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Table 2 - Summary of the differential expression detection methods compared 
Method Test model Significance score Software Reference
FC Average probeset intensity ratio |log fold-change ratio| R package  
t.test Two-sample t-test with equal 

variance 
-log10(p-value) rowttests function in the 

Bioconductor genefilter 
package 

 

Welch.t Two-sample t-test allowing 
unequal variance 

-log10(p-value) rowFtests function in the 
Bioconductor genefilter 
package 

 

SAM Modified version of the standard 
t-statistic to adjust the high 
variance caused by a low 
expression level 

|| *
)()( gg dd − , where  is 

the relative difference and 
gd

*
)( gd  is the expected relative 

difference from permutation 

R samr package [14] 

limma Linear model with empirical-
Bayes-adjusted standard 
deviation 

B-statistic used in limma Bioconductor limma 
package 

[15, 16] 

EBarrays(GG) Empirical Bayes gamma-gamma 
mixture model 

Posterior probability of 
differential expression 

Bioconductor EBarrays 
package 

[17, 18] 

EBarrays(LNN) Empirical Bayes lognormal-
normal mixture model 

Posterior probability of 
differential expression 

Bioconductor EBarrays 
package 

[17, 18] 

 



Supplementary files 

Supplementary file 1 - All supplementary figures and tables of the paper. 
 

Supplementary file 2 - Source codes used to create this paper. 
R codes for creating ROC curves and overlap plots, and histograms of the log2-

transformed signal intensities are contained in this supplementary file. Please read 

through the file “readme.txt” before using these codes.  
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