Sui-Pi Chen and Guan-Hua Huang

Institute of Statistics National Chiao Tung University Hsinchu, Taiwan

 \boxtimes :ghuang@stat.nctu.edu.tw

2012.8.16

Outline

- 1 Motivation
- 2 Methods for detecting gene-gene interaction
- 3 Proposed method: ABCDE
- 4 Simulation
- 5 Real data
- 6 Efficient Stochastic Search

- Motivation

Outline

1 Motivation

- 2 Methods for detecting gene-gene interaction
- 3 Proposed method: ABCDE
- 4 Simulation
- 5 Real data
- 6 Efficient Stochastic Search

Motivation

Motivation



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

- Motivation

```
Single nucleotide polymorphism (SNP)
```

A DNA sequence variation

- Two alleles: A and a
- Treating SNPs as categorical features that have three possible values: AA, Aa, aa.
- Relabel AA (2),Aa (1),aa (0).

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

- Motivation

What is the gene-gene interaction (epistasis)?

- The effects of a given gene on a biological trait are masked or enhanced by one or more genes.
- As increasing body of evidence has suggested that epistasis ploy an important role in susceptibility to human complex disease, such as Type 1 diabetes, breast cancer, obesity, and schizophrenia.
- More evidences have confirmed that display interaction effects without displaying marginal effect.

Hethods for detecting gene-gene interaction

Outline

1 Motivation

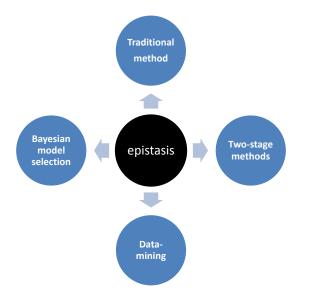
- 2 Methods for detecting gene-gene interaction
 MDR
 BEAM
- 3 Proposed method: ABCDE
- 4 Simulation

5 Real data

6 Efficient Stochastic Search

└─ Methods for detecting gene-gene interaction

Methods for detecting gene-gene interaction



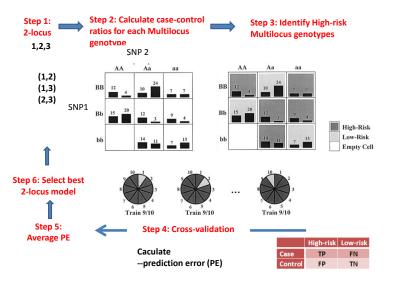
Hethods for detecting gene-gene interaction

Methods for detecting gene-gene interaction

Traditional method	 -Logistic regression, contingency table χ² test - It dose not include the interaction terms without main effect. - High-dimensional data that has high-order interactions, the contingency table have many empty cells.
Two-stage method	 A subset of loci that pass some single-locus significance threshold is chosen as the "filtered" subset. An exhaustive search of all two-locus or higher-order interactions is carried out an the "filtered" subset.
Data-mining method	 -Nonparametic -Not doing an exhaustive search -Multifactor Dimensionality Reduction (MDR)
Bayesian model selection	–Bayesian epistasis association mapping (BEAM) –Algorithm via Bayesian Clustering to Detect Epistasis (ABCDE)

- Methods for detecting gene-gene interaction

Multifactor Dimensionality Reduction (MDR)



└─ Methods for detecting gene-gene interaction └─ MDR

MDR

- From all best models, the model with minimal average prediction error is the final best model.
- MDR is the data reduction strategy which is the nonparametric model and genetic model-free.

Permutation test for the final best model.

- Applying MDR to 1000 permutation datasets, we use the PE of the 1000 final best models for the original data to create an empirical distribution for estimate of a p-value.
- Note. This permutation test includes the variation of the search.

Methods for detecting gene-gene interaction

BEAM

BEAM algorithm

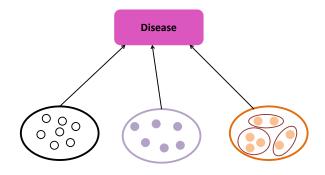
BEAM (Zhang and Liu, 2007) algorithm

- case-control study
- Metropolis-Hasting algorithm
- posterior probabilities
 - each SNP not associated with the disease
 - each SNP associated with the disease
 - each SNP involved with other SNPs in epistasis
- B statistic
 - each SNP or set of SNPs for significant association
 - \blacksquare asymptotically distributed as a shifted χ^2 with 3^k-1 degrees of freedom

└─ Methods for detecting gene-gene interaction └─ BEAM

BEAM algorithm

- $\mathbf{I} = (I_1, \cdots, I_L)$ indicator the membership of the SNPs with $I_j = 0, 1, 2.$
- BEAM found no significant interactions associated in the AMD data.



Outline

1 Motivation

2 Methods for detecting gene-gene interaction

3 Proposed method: ABCDE

- Model
- Stochastic search
- Permutation test

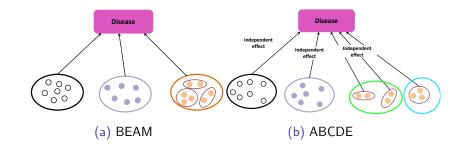
4 Simulation

5 Real data

6 Efficient Stochastic Search

Proposed method: ABCDE

Algorithm via Bayesian Clustering to Detect Epistasis (ABCDE)



ABCDE algorithm

ABCDE algorithm

- bayesian clustering approach
- case-control study
- Gibbs weighted Chinese restaurant (GWCR) procedure
- posterior probabilities
 - each SNPs is associated with the disease
 - clustered SNPs is associated with the disease.
- Permutation test for candidate disease subset selected by ABCDE
 - 10-fold cross validation
 - the heart of MDR approach: dimensional reduction.

Example

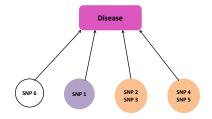
•
$$\mathbf{c} = (C_1, \cdots, C_{n(\mathbf{c})}).$$

c = ({1}, {2,3}, {4,5}, {6}).

• Add the group indicator $\mathbf{a} = (a_1, a_2, \cdots, a_{n(\mathbf{c})}).$

- Group membership of subset C_j : $a_j \in \{0, 1, 2, \cdots, g(\mathbf{c})\}$.
- The partition of interest is $\mathbf{h} = (H_1, \cdots, H_{n(\mathbf{h})})$, where $H_j = (C_j, a_j)$.

h =
$$(\{1\}, \{2,3\}, \{4,5\}, \{6\}), (0,2,2,1)).$$



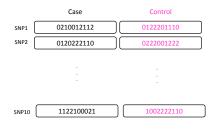
A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Notations in ABCDE

- Treating SNPs as categorical features that have three possible values: AA(2), Aa(1), aa(0).
- N_d cases and N_u controls are genotyped at L SNPs.

$$\label{eq:G} \begin{array}{l} \mathbf{G} = (\mathbf{D},\mathbf{U}) \\ \mathbf{D} = (\mathbf{d}_1,\mathbf{d}_2,\cdots,\mathbf{d}_{N_d}) \text{ be the case genotype ;} \\ \mathbf{U} = (\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_{N_u}) \text{ be the control genotype.} \end{array}$$

Genotypes of patient i at L SNPs: $\mathbf{d}_{\mathbf{i}} = (d_{i1}, \cdots, d_{iL})$. Genotypes of control i at L SNPs: $\mathbf{u}_{\mathbf{i}} = (u_{i1}, \cdots, u_{iL})$.



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Product partition model

Disease $p(\mathbf{h}|\mathbf{G})$ $\propto p(\mathbf{h}) \times p(\mathbf{G}|\mathbf{h})$ $n(\mathbf{h})$ SNP 6 SNP 2 SNP 4 $\propto p(\mathbf{h}) \prod f_{a_i}(G_{C_i})$ SNP 1 SNP 3 SNP 5 i=1 $\propto p(\mathbf{h}) \times \prod f_0(\mathbf{G}_A) \times \prod f_1(\mathbf{G}_A) \times \cdots \times \prod f_{g(\mathbf{h})}(\mathbf{G}_A),$ $A \in \mathbf{S}_0$ $A \in \mathbf{S}_1$ $A \in \mathbf{S}_{a(\mathbf{h})}$

• $\mathbf{S}_k = \{C_j : a_j = k, j = 1, \cdots, n(\mathbf{h})\}$, for $k = 0, 1, \cdots, g(\mathbf{h})$.

Note that some S_k may be empty.

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

L_Model

The data model- Group 0

Case genotype frequencies at unlinked SNPs are the same as control frequencies.

		Case		Control				
Genotype	AA	Aa	аа	AA	Aa	аа		
Count	m_{0j1}	m_{0j2}	m_{0j3}	n_{0j1}	n_{0j2}	n_{0j3}		
	Case+Control							
Genotype	AA		Aa		аа			
Frequencies	requencies $ heta_{0j}$		$ heta_{0j2}$		$ heta_{0j3}$			
Count	m_{0j}	$m_{0j1} + n_{0j1}$		$m_{0j2} + n_{0j2}$		$m_{0j3} + n_{0j3}$		

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

The data model- Group 0

Conditional distribution of \mathbf{G}_{C_i} given \mathbf{h} and $\boldsymbol{\theta}_{0j}$ as

$$f_0(\mathbf{G}_{C_j}|\boldsymbol{\theta}_{0j}) = \prod_{i=1}^3 \theta_{0ji}{}^{(m_{0ji}+n_{0ji})},$$

- Specify a Dirichlet(α_0) prior for $\theta_{0j} = (\theta_{0j1}, \theta_{0j2}, \theta_{0j3})$, where $\alpha_0 = (\alpha_{01}, \alpha_{02}, \alpha_{03})$.
- We integrate out θ_{0j} and get the marginal distribution given h as

$$f_0(\mathbf{G}_{C_j}) = \frac{\Gamma(|\boldsymbol{\alpha}_0|)}{\Gamma(|\boldsymbol{\alpha}_0| + N_d + N_u)} \prod_{i=1}^3 \frac{\Gamma(\alpha_{0i} + m_{0ji} + n_{0ji})}{\Gamma(\alpha_{0i})},$$

• $|\alpha_0|$: the sum of all elements in α_0 .

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

The data model- Group \boldsymbol{k}

- SNP subset C_j associated with the disease should show different genotype frequencies between cases and controls.
- 3^k possible genotype combinations.

	Case				Control			
Genotype	AABB	AABB		aabb	AABB	AABB		aabb
Count	m_{kj1}	m_{kj2}		m_{kj3^k}	n_{kj1}	n_{kj2}		n_{kj3^k}

	Case			Control				
	AABB	AABB		aabb	AABB	AABB		aabb
Frequencies	θ_{kj1}	θ_{kj2}		θ_{kj3^k}	γ_{kj1}	γ_{kj2}		γ_{kj3^k}

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

The data model- Group k

 \blacksquare Conditional likelihood given ${\bf h}$, ${m heta}_{kj}$ and ${m \gamma}_{kj}$

$$f_k(\mathbf{G}_{C_j}|\boldsymbol{\theta}_{kj}, \boldsymbol{\gamma}_{kj}) = \prod_{i=1}^{3^k} \theta_{kji}^{m_{kji}} \gamma_{kji}^{n_{kji}},$$

• We Specify a Dirichlet(α_k) prior for $\theta_{kj} = (\theta_{kj1}, \cdots, \theta_{kj3^k})$ and a Dirichlet(β_k) prior for $\gamma_{kj} = (\gamma_{kj1}, \cdots, \gamma_{kj3^k})$.

$$\boldsymbol{\alpha}_{k} = (\alpha_{k1}, \alpha_{k2}, \cdots, \alpha_{k3^{k}}).$$
$$\boldsymbol{\beta}_{k} = (\beta_{k1}, \beta_{k2}, \cdots, \beta_{k3^{k}}).$$

Integrating out γ_{kj} and θ_{kj} , we obtain the marginal distribution ${f h}$

$$f_k(\mathbf{G}_{C_j}) = \frac{\Gamma(|\boldsymbol{\alpha}_k|)}{\Gamma(|\boldsymbol{\alpha}_k| + N_d)} \frac{\Gamma(|\boldsymbol{\beta}_k|)}{\Gamma(|\boldsymbol{\beta}_k| + N_u)} \prod_{i=1}^{3^k} \frac{\Gamma(\alpha_{ki} + m_{kji})}{\Gamma(\alpha_{ki})} \frac{\Gamma(\beta_{ki} + n_{kji})}{\Gamma(\beta_{ki})}$$

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

The prior part

- A conjugate prior distribution of partition for the product partition model is the Dirichlet process.
- To distinguish subsets from group 0 and group 1, we assign a single SNP to be either group 0 or group 1 with equal probability.

$$p(\mathbf{h}) = p(\mathbf{c}, \mathbf{a}) \propto \frac{\delta^{n(\mathbf{h})} \prod_{j=1}^{n(\mathbf{h})} \Gamma(\#(C_j))}{2^B} = \prod_{j=1}^{n(\mathbf{h})} g(C_j),$$
$$\mathsf{E}(n(\mathbf{h})) = \delta \sum_{i=1}^{L-1} \frac{1}{\delta+i}.$$

• δ approaches 0 and ∞ , the expected number has limiting values 1 and L, respectively.

Proposed method: ABCDE

└─ Stochastic search

MCMC sampling

$$p(\mathbf{h}) \propto \prod_{j=1}^{n(\mathbf{h})} g(C_j)$$

 $p(\mathbf{G}|\mathbf{h}) \propto \prod_{j=1}^{n(\mathbf{h})} f_{a_j}(G_{C_j})$
Posterior

$$p(\mathbf{h}|\mathbf{G}) \propto \prod_{j=1}^{n(\mathbf{h})} g^*(C_j)$$
 with $g^* = g(C_j) imes f_{a_j}(G_{C_j})$

 \Rightarrow Need a procedure to simulate from a distribution proportional to $\prod_{j=1}^{n(\mathbf{h})}g^*(C_j).$

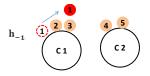
Proposed method: ABCDE

Stochastic search

- Choose an initial partition h_0
- The following Gibbs cycle, for $i = 1, \cdots, L$, do
 - 1. Remove $\{i\}$, from \mathbf{h}_{-i}
 - 2. Reseat $\{i\}$ according to the seating probabilities $p(\mathbf{h}^*|\mathbf{G})/p(\mathbf{h}_{-i}|\mathbf{G})$,where \mathbf{h}^* is the resulting partition after the reassignment of marker t
- To get a new partition of $1, \cdots, n$.

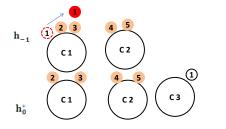
Proposed method: ABCDE

└─ Stochastic search



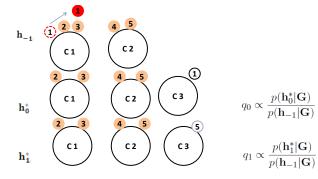
Proposed method: ABCDE

└─ Stochastic search



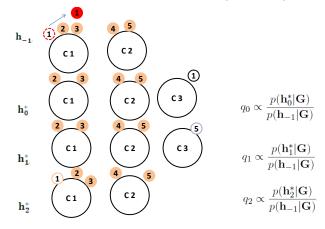
Proposed method: ABCDE

└─ Stochastic search



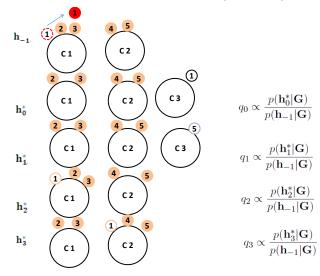
Proposed method: ABCDE

Stochastic search



Proposed method: ABCDE

└─ Stochastic search



Proposed method: ABCDE

Stochastic search

Gibbs weighted Chinese restaurant (GWCR) procedure

Output:

- **1** Posterior Mode: $\mathbf{h}^* = \frac{max}{\mathbf{h}} p(\mathbf{h} | \mathbf{G})$
- 2 The posterior distribution of single SNPs and subset of SNPs association with the disease.

Permutation test

Permutation test

- 10-fold cross-validation and the heart of MDR.
- disease association for SNP subsets selected by ABCDE.
- validation test.
- Don't take the variation of SNP subset selection into count.
- Balance accuracy (BA) and prediction accuracy (PA).

$$\mathsf{BA} = \frac{\mathsf{sensitivity} + \mathsf{specificity}}{2} = \frac{1}{2}(\frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}} + \frac{\mathsf{TN}}{\mathsf{TN}+\mathsf{FP}}),$$

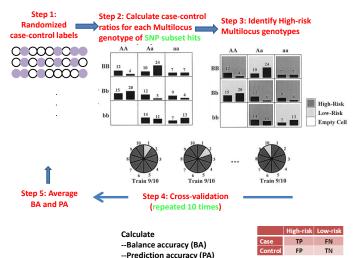
$$\mathsf{PA} = -\frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{FN} + \mathsf{TN} + \mathsf{FP}},$$

 The BA function (Velez et al.,2007) is preferable to PA when there is an imbalanced dataset.

Proposed method: ABCDE

Permutation test

Permutation test



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Simulation

Outline

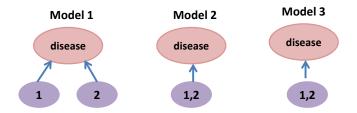
- 1 Motivation
- 2 Methods for detecting gene-gene interaction
- 3 Proposed method: ABCDE
- 4 Simulation
- 5 Real data
- 6 Efficient Stochastic Search

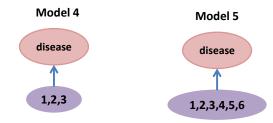
Simulation

Simulation

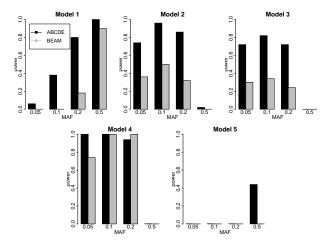
- To evaluate the performance of ABCDE, we simulated data from 10 different models.
 - Single-set models (models 1-5)
 - Multiple-set models (models 6-8)
 - LD-extend models (models 9-10)
- Comparison between ABCDE and BEAM.

Single-set models



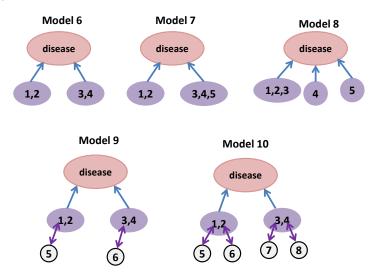


Result for Single-set models



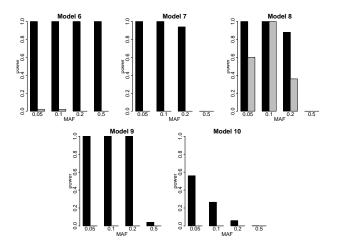
A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Multiple-set models and LD-extend models



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Result for Multiple-set models and LD-extend models



Outline

- 1 Motivation
- 2 Methods for detecting gene-gene interaction
- 3 Proposed method: ABCDE
- 4 Simulation
- 5 Real data
- 6 Efficient Stochastic Search

Real data

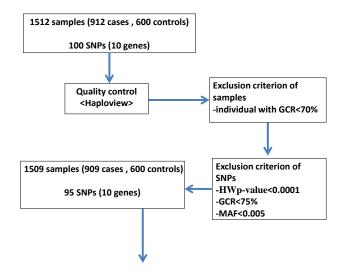
- Detect pairwise and/or higher-order SNP interactions and understand the genetic architecture of schizophrenia through ABCDE and BEAM.
- 1512 individuals, including 912 schizophrenia cases and 600 controls.

Gene	Chr	number
DISC1	1q	16
LMBRD1	бq	11
DPYSL2	8p	14
TRIM35	8p	10
PTK2B	8p	19
NRG1	8p	10
DAO	12q	5
G72	13q	5
RASD2	22q	4
CACNG2	22q	6

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

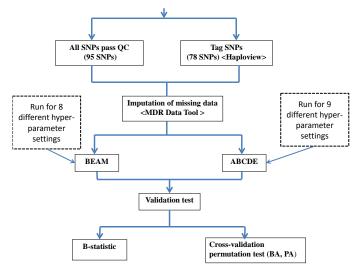
Real data

Flow chart-Quality Control



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Flow chart



Detection of gene-gene interaction

To obtain robust results, we adopted the two-stage approach.

- Candidate SNP or subset SNPs hit by ABCDE (BEAM): In at least 3 out of different settings, candidate SNP subset hit with the posterior probability higher than a predefined cut-off, 0.3.
- Susceptibility SNPs: permutation test (p-value< 0.001) or B-statistic (p-value< 0.1).</p>

Result

Table: Identified significant epistatic sets by BEAM using all 95 SNPs.

SNP	Chr.	Gene	B-statistic(p-value)	BA(p-value)	PA(p-value)
rsDISC1P-3	1q	DISC1	$55.19(9.89 \times 10^{-11})$	0.5944(0)	0.5557(0.018)
rsDISC1-23	1q	DISC1	$31.31(1.51 \times 10^{-5})$	0.5705(0)	0.5416(0.224)
rsDPYSL-4	8p	DPYSL	21.26(0.002)	0.5561(0)	0.5156(0.399)
rsTRIM35-5	8p	TRIM	$32.23(9.52 \times 10^{-6})$	0.5693(0)	0.5296(0.386)
rsNRG1P-7	8p	NRG1	$59.88(9.44 \times 10^{-12})$	0.5996(0)	0.5815(0.024)
rsG72-E-2	13q	G72	$43.16(4.03 \times 10^{-8})$	0.5839(0)	0.5695(0.029)

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Result

Table: Identified significant epistatic sets by BEAM using 78 selected tag SNPs.

SNP	Chr.	Gene	B-statistic(p-value)	BA(p-value)	PA(p-value)
rsDISC1-23	1q	DISC1	$31.31(1.24 \times 10^{-5})$	0.5705(0)	0.5434(0.179)
rsDPYSL-4	8p	DPYSL	21.26(0.0018)	0.5561(0)	0.5176(0.415)
rsDPYSL-15	8p	DPYSL	13.59(0.087)	0.5328(0)	0.4606(0.574)
rsTRIM35-5	8p	TRIM	$32.23(7.82 \times 10^{-6})$	0.5693(0)	0.5315(0.343)
rsNRG1P-7	8p	NRG1	$59.88(7.76 \times 10^{-12})$	0.5996(0)	0.5832(0.013)
rsG72-E-2	13q	G72	$43.16(3.31 \times 10^{-8})$	0.5839(0)	0.5712(0.022)
rsSDISC1-1,rsDISC1-23	1q	DISC1	$50.89(8.29 \times 10^{-5})$	0.5672(0)	0.5838(0.004)
rsDISC1-27,rsDISC1-23	1q	DISC1	$55.85(9.05 \times 10^{-6})$	0.5632(0)	0.5885(0.001)
rsDISC1-23,rsDISC1-4	1q	DISC1	35.71(0.059)	0.5765(0)	0.5765(0.002)
rsSDISC1-1,rsDISC1-23,rsDISC1-27	1q	DISC1	74.51(0.109)	0.5692(0)	0.5792(0.001)
rsSDISC1-1,rsDISC1-23,rsDISC1-4	1q	DISC1	63.09(1)	0.5678(0)	0.5885(0)
rsDISC1-23,rsDISC1-27,rsDISC1-4	1q	DISC1	70.62(0.41)	0.5588(0)	0.5779(0.002)
rsSDISC1-1,rsDISC1-23, rsDISC1-27,rsDISC1-4	1q	DISC1	87.56(1)	0.5708(0)	0.5905(0.001)

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Result

Table: Identified significant epistatic sets by ABCDE using all 95 SNPs.

SNPs	Chr.	Gene	B-statistic(p-value)	BA(p-value)	PA(p-value)
rsDPYSL-15,rsSDPYSL2-11	8p	DPYSL	$58.48(4 \times 10^{-6})$	0.5304(0.01)	0.5933(0.005)
rsSTRIM35-1,rsTRIM35-2,rsTRIM35-5	8p	TRIM35	127.97(0)	0.5647(0)	0.5146(0.412)
rsSDPYSL2-1,rsDPYSL-3,rsDPYSL-4	8p	DPYSL2	81.63(0.016)	0.5678(0)	0.6619(0)
rsDAO-6,rsDAO-7,rsDAO-8	12q	DAO	216.99(0)	0.582(0)	0.6531(0)
rsG72-E-1,rsG72-E-2,rsG72-13	13q	G72	$91.00(5.32 \times 10^{-4})$	0.5866(0)	0.575(0.006)
rsSDISC1-1,rsDISC1P-3,	1q	DISC1	251.41(0)	0.6325(0)	0.6178(0)
rsDISC1-23,rsDISC1-27					
rsSDPYSL2-1,rsDPYSL-3,	8p	DPYSL2	$197.15(2.3 \times 10^{-5})$	0.5686(0)	0.6185(0)
rsDPYSL-4,rsSDPYSL2-5					
rsNRG1P-6,rsNRG1P-7,	(8p, 22q)	NRG1,	86.96(1)	0.5962(0)	0.5642(0.05)
rsCACNG2-16,rsCACNG2-15		CACNG2			
rsSTRIM35-1,rsTRIM35-2,rsTRIM35-4,	8p	TRIM35	354.85(1)	0.572(0)	0.5255(0.403)
rsTRIM35-5,rsTRIM35-6					
rsDAO-6,rsDAO-7,rsDAO-8	(12q,22q)	DAO,	171.62(1)	0.5737(0)	0.6137(0)
rsCACNG2-2,rsCACNG2P-1,		CACNG2			
rsCNCNG2-18					

Result

Table: Identified significant epistatic sets by ABCDE using 78 selected tag SNPs.

SNPs	Chr.	Gene	B-statistic(p-value)	BA(p-value)	PA(p-value)
rsDPYSL-15,rsSDPYSL2-11	8p	DPYSL	$58.48(2.78 \times 10^{-6})$	0.5304(0.007)	0.5933(0.006)
rsSDPYSL2-1,rsDPYSL-3,rsDPYSL-4	8p	DPYSL	81.63(0.0089)	0.5678(0)	0.6619(0)
rsTRIM35-4,rsTRIM35-5,rsTRIM35-6	8p	TRIM35	157.49(0)	0.5651(0)	0.5256(0.38)
rsNRG1-1,rsNRG1P-6,rsNRG1P-7	8p	NRG1	75.64(0.074)	0.5888(0)	0.5736(0.006)
rsG72-E-1,rsG72-E-2,rsG72-13	13q	G72	$91.00(2.92 \times 10^{-4})$	0.5866(0)	0.575(0.006)
rsDPYSL2-1,rsDPYSL-3,	8p	DPYSL	$197.15(1.01 \times 10^{-5})$	0.5656(0)	0.6223(0)
rsDPYSL-4,rsDPYSL-21					
rsDAO-6,rsDAO-8,	(12q, 13q)	(DAO,G72)	181.52(0.0011)	0.6289(0)	0.6769(0)
rsG72-E-2,rsG72-13					
rsSDISC1-1,rsDISC1-23,rsDISC1-27,	1q	DISC1	25.62(1)	0.5919(0)	0.5969(0)
rsDISC1-2,rsDISC1-35					

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Efficient Stochastic Search

Outline

- 1 Motivation
- 2 Methods for detecting gene-gene interaction
- 3 Proposed method: ABCDE
- 4 Simulation
- 5 Real data
- 6 Efficient Stochastic Search

Efficient Stochastic Search

Although the GWCR algorithm works well high-dimensional data (simulation data with 1000 SNPs from 2000 cases and 2000 controls), genome-scale gene-gene interaction analysis is still infeasible.

- To improve the mixing of chains: Restricted Gibbs split merge procedure (RGSM) (Jain and Neal, 2004).
- Be easy to move between local modes: equi-energy (EE) sampler (Kou, Zhou and Wong, 2006)

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

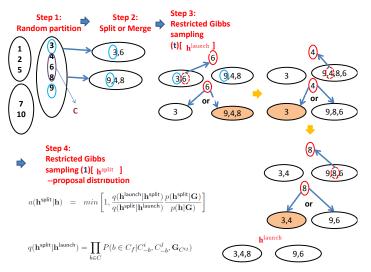
Efficient Stochastic Search

Restricted Gibbs split merge procedure (RGSM)

- Simple random split-merge procedure:
 - The split proposals are unlikely to be appropriate, and hence are unlikely to be accepted.
- Restricted Gibbs split merge procedure (RGSM):
 - To employs a more complex proposal distribution obtained by using a Gibbs sampling on subset of data.
 - The split proposals with reference to the observed data is will likely be accepted.

A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Outline of Restricted Gibbs split merge procedure



Equi-Energy (EE) Sampler

The distribution of the system is thermal equilibrium at temperature T is described by the Boltzmann distribution,

$$p(\mathbf{h}) = \frac{1}{Z(T)} exp(\frac{-q(\mathbf{h})}{T})$$

where $Z(T) = \sum_{\mathbf{h}} exp(\frac{-q(\mathbf{h})}{T})$. **p**(**h**): posterior distribution. **q**(**h**): $-log(p(\mathbf{h}))$

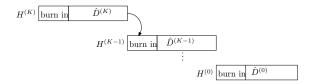
A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Equi-Energy (EE) Sampler

$$1 = T_0 < T_1 < \dots < T_K$$

$$p_i(h) = \frac{1}{Z(T_i)} exp(\frac{-q(\mathbf{h})}{T_i})$$

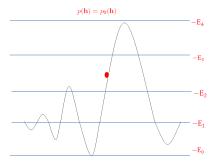
The ideal is the perform sampling at different temperatures which make the distribution flat.



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Equi-Energy (EE) Sampler

$$q(\mathbf{h}) = -log(p(\mathbf{h})) \in [E_k, E_{k+1})$$
$$E_0 < E_1 < E_2 < \dots < E_K < E_{K+1} = \infty,$$

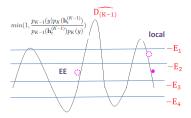


Hybird-GRE Sampler

Hybird-GRE sampler consists of:

- 1. Global move: EE sampler.
- 2. Local move: GWCR(1)+RGSM(1).
- Chain H^K : only local move.

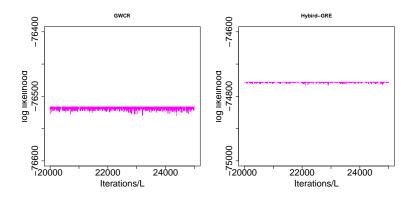
• Other chain: prob for the global move is increasing.



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Efficient Stochastic Search

Result for Hybird-GRE sampler



A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data

Conclusion

Outline

- 1 Motivation
- 2 Methods for detecting gene-gene interaction
- 3 Proposed method: ABCDE
- 4 Simulation
- 5 Real data
- 6 Efficient Stochastic Search

- Conclusion

Conclusion

- We propose the ABCDE algorithm which can character all explicit (interaction) effects, regardless of the number of groups.
- We further develop permutation tests to validate the disease association of SNP subsets selected by ABCDE.
- Applying ABCDE to the real data, we identify several known and novel schizophrenia-associated SNPs and sets of SNPs.
- We may develop a parallel implementation of the ABCDE, which is the algorithm for large scale epistatic interaction mapping, including genome-wide studies with hundreds of thousands of markers.